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Abstract—Laparoscopic simulators provide a safe environment
in which surgeons can practice and hone specific skills without
risk to patients. However, providing effective performance feed-
back requires selecting the relevant metrics that most accurately
reflect skill levels while remaining actionable for the trainee.
This study investigates optimal sensor selection for laparoscopic
simulators to enhance training assessment accuracy. Six common
sensor types were tested across different combinations to evaluate
their impact on recognizing surgical gestures, surgical tasks,
and surgeon expertise levels using convolutional neural networks
and multidimensional dynamic time-warping classifiers. The
results show that linear velocity and gripper angle yield high
classification accuracy across all metrics. For gesture recognition,
velocity and gripper angle consistently appeared in the top-
performing sensor combinations, demonstrating that these two
parameters alone are highly indicative of a surgeon’s intent and
skill. Surprisingly, adding positional data does not improve accu-
racy, challenging the traditional emphasis on positional metrics
in training systems. With the right sensor selection, surgical
simulators can achieve accurate and actionable feedback while
reducing complexity and cost without sacrificing performance,
which can help make simulators more accessible and effective
for training purposes.

I. INTRODUCTION

Laparoscopy is a form of minimally invasive surgery where
thin surgical instruments and a tube-shaped camera are passed
through small incisions in the abdomen into the body cavity
[1]. Compared to open surgery, laparoscopic procedures result
in less trauma, a faster recovery time, and shorter hospital
stays for patients [1], [2]. Unlike open surgery, the surgeon
cannot directly see the operation site and must maneuver the
tools based solely on the 2D video feed from the camera. This
results in a steep learning curve as surgeons must translate 2D
visual information into 3D spatial awareness and develop new
skills in depth perception and hand-eye coordination [3], [4].

To alleviate the learning curve, various training methods
have been developed, including intra-operative experience,
cadaveric training (wet models), and simulators (dry models,
which can employ physical and/or virtual technology). With
intra-operative training, a resident surgeon first observes a
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surgical procedure before performing surgical gestures of in-
creasing complexity. Cadaver-based training eliminates patient
risk but is costly and lacks the realism of actual surgery.
Both modalities have other major limitations, including limited
patient access, variable case complexity, inconsistent training
quality, and a lack of timely feedback.

The lack of standardized training led the Society of Amer-
ican Gastrointestinal and Endoscopic Surgeons to create a
training curriculum with structured drills in a controlled envi-
ronment using a training box. The box had openings through
which surgical tools were inserted while a monitor displayed
the video feed from a camera inside the box [5]. The trainer
simulates motions commonly used in laparoscopy, such as
bean drop, running string, block moving, suture foam, and a
checkerboard drill. It was shown that 30-35 repetitions of each
of these gestures resulted in improved surgical performance
[6] and surgery residents improved their performance over
a 6-month training period [7]. However, box simulators lack
adaptability for varying patient sizes and are often tailored to
adult patients with an average workspace volume of 34,225
cm3. In pediatric patients, for example, the workspace is 20
times smaller than in adults, requiring a specialized training
box such as that presented in [8] with a volume of 1,620 cm3.
Another major limitation of these trainers is the lack of realism
and subjective performance assessment metrics.

Virtual reality (VR) trainers can restore a level of realism
that box trainers lack. The surgeon is immersed in a VR
environment to practice surgical tasks or the gestures found in
traditional box simulators [9]. Resident surgeons trained using
VR performed significantly shorter laparoscopic operations
in the operating room, and supplementary training further
decreased surgical time than practicing on a box trainer alone
[6]. While box trainers require an expert to provide needed
corrections to the trainee, VR trainers can collect and evaluate
data automatically and provide immediate feedback [9], [10].

The majority of metrics evaluating surgical skills compare
the trainee’s tool path with that of an expert [11], [12]. For
example, based on the path and speed of the centre of gravity
of both hands, a neural network can determine whether the
user is an expert or novice [11]. Another study using dynamic
time warping identified surgical gestures in percutaneous
nephrolithotomy based on tool path and compared them to that
of an expert [13]. Markov models, recurrent neural networks
(RNNs), and convolutional neural networks have also been
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TABLE I: Different instrumentation modalities in current
laparoscopic simulators from least to most expensive

Simulator Instrumentation Modality

Box Trainer [17] Camera
Box Trainer [18] Accelerometer, gyroscope, magnetometer
Box Trainer [19] Force sensors, IMU
LAPKaans [20] Roll, yaw, pitch, surge, speed, grasping force
Virtual Reality [21] Camera, Leap Motion, position, orientation
Lapro Apex [22] 13 parameters - motion sensors and camera
BlueDRAGON [23] Position, force/torque, contact force sensors
DaVinci [14] 76 kinematic variables

used in laparoscopy training [14], [15], [16].
While tool path is widely accepted as a useful metric

for assessing surgical performance, there are many other
kinematic features that can be measured. For example, the
DaVinci surgical system measures 76 kinematic variables
in real-time. Each simulator captures a different subset of
kinematic variables; Table I summarizes different laparoscopy
trainers and the sensing modalities they use. Whereas such
extensive data provide detailed and useful information to a per-
formance assessment algorithm, it does not necessarily offer
direct, interpretable value to trainees seeking to improve their
performance. Overloading them with complex metrics that
may not align with direct improvements may create cognitive
burden, making it difficult to interpret and apply feedback
meaningfully. This then poses a risk of confusing trainees or
diverting focus toward optimizing irrelevant metrics. Effective
feedback should be concise to allow trainees to focus on
improvements without being overwhelmed by details.

When designing a laparoscopic simulator and accompanying
performance evaluation metrics, which sensors provide the
most relevant and valuable information for accurately assess-
ing a surgeon’s performance and for providing feedback to a
trainee? To answer this question, we use combinations of data
acquired from different sensors during laparoscopic training in
a classification algorithm. The algorithm then tries to identify
the surgical gesture the trainee is performing, the surgical task
they are attempting (a series of sequential gestures), and their
level of expertise (expert, intermediate, or novice). The algo-
rithm’s classification accuracy is then compared across these
different combinations of sensor data. In doing so, we make
the assumption that the combination of sensor data that leads
to the most accurate classification in these three categories
is the most relevant data in the simulator to which trainees
should pay particular attention. While dimension reduction has
been used on surgical data [24], we take a different approach.
Sensor data is clustered under different sensor categories. For
example, when the position sensor is used, positional data from
all measured degrees of freedom are used in the algorithm. By
comparing their impact on the accuracy of classifying surgical
gestures, tasks, and expertise levels, we identified the most
important sensors for training effectiveness rather than just
minimizing data complexity.

The results challenge the currently accepted paradigm that
positional data is the most critical metric for assessing surgical

proficiency, suggesting that other data may play a more
significant role. The results also offer new insights to guide
the design of cost-effective laparoscopic simulators (reducing
unnecessary sensors) and algorithms that provide effective and
actionable feedback to trainees. The analysis performed in
this study uses kinematic data from a robotic laparoscopic
surgical trainer, which is different from traditional laparoscopy.
However, some useful insights obtained from kinematic data
may generalize between the two forms of surgery.

II. SENSOR DATA COLLECTION

Data from different sensing modalities are acquired as
multidimensional temporal sequences. To provide meaningful
feedback to a trainee, we will assume that these temporal
sequences can be segmented into surgical gestures and surgical
tasks. A surgical gesture is a primitive interaction between
a surgeon and the instrument (e.g., positioning or orienting
a needle, pulling suture) and a surgical task is a continuous
sequence of predefined gestures (e.g., knot tying, which re-
quires several needle positioning and suture pulling gestures).
From the survey summarized in Table I, the most commonly
used sensors in laparoscopic trainers may be clustered into 6
different groups:

• Group 1 - Linear position: A linear position sensor that
measures the 3D Cartesian position of each tool’s tip;

• Group 2 - Linear speed: A sensor that can measure the
3D linear speed of each tool’s tip;

• Group 3 - Angular position: A sensor that can measure
the pitch, yaw, and roll of the tool shaft (gyroscope);

• Group 4: Angular speed: Sensors that can measure the
3D angular speed of the tool shaft, usually a gyroscope;

• Group 5: Accelerometers: Sensors that measure the
linear acceleration of the tool tip, usually an inertial
measurement unit (IMU);

• Group 6: Gripper angle: Detects the opening angle of
each tool’s gripper or if the gripper is opened or closed.

To determine the importance of each variable measured by
these sensors on training performance, the temporal kinematic
data from each of these sensors can be combined into all
26 = 64 possible sensor combinations and passed through
a classifier to identify a surgical task or gesture. We assume
that the sensor combination that best predicts a predefined
surgical gesture or task provides the most useful information
to a trainee and specific areas they can focus on. For example,
if the opening angle of the grasping tool (gripper angle) is
a key predictor of a surgical gesture, task and/or expertise
level, then the training surgeon must focus on controlling that
movement throughout the procedure.

Let the sensor database be a multidimensional time series
wX ∈ Rt×n, where w is a sample and u is the total number
of samples in the database, i.e., 1 ≤ w ≤ u. Each of the
n dimensions of X represents one dimension of a given
measurement, all of which have length t:



Fig. 1: Convolutional neural network structure for gesture
and task recognition. The input layer is a convolution layer,
followed by a max pooling, dropout, convolution, max pooling,
dropout, flattening, and two dense layers.

wX =


x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

xt,1 xt,2 . . . xt,n

 . (1)

As per the notation above, each column of wX corresponds
to a temporal sequence of the nth measured dimension, and
each row is a time stamp. We further assume that the each
time series wX corresponds to a known class, corresponding
to a given surgical gesture. Further, a surgical task wY can
be created by concatenating a sequence of p gestures, i.e. ,
wY = [1X 2X . . . pX]T . With a database of known gestures,
tasks and the expertise level of the performing surgeon, a
classification algorithm can be implemented to identify the
surgical task, gesture, and expertise level, using different
dimensions of wX . When dimension 1 ≤ c ≤ n is not used in
the classification algorithm, then column c of wX is removed.

III. SENSOR SELECTION FOR GESTURE, TASK, AND
EXPERTISE LEVEL CLASSIFICATION

To identify surgical gestures and tasks using a specific
combination of sensor data, several classification algorithms
were tested. For gesture and task classification, a convolutional
neural network (CNN) yielded the best results and is selected
moving forward. While well suited for time series, it requires
extensive training and a large dataset. Therefore, for expertise
level recognition, dynamic time warping (DTW) was selected.

A. Sensor Selection for Gesture, and Task Classification

Classifying surgical gestures and tasks involves analyzing
the measured data, comparing it with a database, and assigning
a class to each gesture or task. A convolutional neural network
(CNN) was selected, as it is well-suited to identifying patterns
in temporal series data. The structure of the optimized CNN
classifier is summarized in Fig. 1 and Table II. In the all convo-
lution layers, the activation function is set to a rectified linear
unit so that negative values resulting from the convolutional
operation are set to 0, and the range of the resulting volume
from the CNN is positive. This has been shown to increase
speed of learning [25]. The CNN uses the ”adam” optimizer
and the loss function is the ”categorical cross-entropy”. For
the convolutional layers, the stride value defaults to 1 and for
the max pooling layers it defaults to the pool size of 2.

TABLE II: CNN model architecture with hyperparameters

Layer Details

1D convolutional Layer 64 filters, 3 kernels, “relu” activation
Max pooling layer size 2
Dropout layer rate 0.5
1D convolutional layer 128 filters, 3 kernels, “relu” activation
Max pooling layer size 2
Dropout layer rate 0.5
Flatten layer none
Dense layer 100 neurons, ”relu” activation
Output dense layer As many neurons as classes

Softmax activation

Further optimization of the model architecture may improve
the overall performance. However, the performance achieved
with this model is in line with what other studies using the
same dataset have achieved [16].

B. Sensor Selection for Expertise Recognition

Classifying the trainee’s expertise level involves analyzing
data in a task, comparing it with the database, and classifying
the trainee as novice, intermediate, or expert. In a training
context, the database will have a significant class imbalance,
where non experts will be more represented than experts.
Therefore, the classifier will be trained in a smaller dataset
than when classifying gestures or tasks. CNN do not perform
well on small training sets [26]. Multidimensional DTW is
better suited to calculate the similarity between small sets of
data [26]. A k−nearest neighbour (kNN) can then be used to
assign the trainee to an expertise group. DTW involves stretch-
ing or compressing a signal to match the shape of another
signal of different length. Given two samples 1Y ∈ Rt1×n and
2Y ∈ Rt2×n of lengths t1 and t2, DTW can be used to deform
one of the samples until the minimum distance between them
is found. To do so, n matrices cD ∈ Rt1×t2 can be created
to compute the distance between each time stamp of column
c of 1Y and all time stamps of column c of 2Y . Let element
di,j of D be the Euclidean distance between two entries in
column c of two different samples, i.e.,

cdi,j =

√
(1yi,c)

2
+ (2yj,c)

2
, (2)

where yij is the element in the ith row and jth column of
cY , with 1 ≤ i ≤ t1 and 1 ≤ j ≤ t2, the similarity between
the respective dimensions of 1Y and 2Y can be quantified by
finding the optimal alignment that minimizes the cumulative
distance between them. The optimal aliment is known as the
warping distance, or the continuous path in cD with the lowest
distance ce between columns c:

ce = di,j +min


di−1,j

di,j−1

di−1,j−1

. (3)

Considering all n columns of Y (each corresponding to a
sensor measurement), the normalized warping distance is

e =
1

n

n∑
c=1

ce. (4)



To determine each participant’s expertise level, a kNN
classifier identifies the database samples with the k smallest
warping distances to the task being performed. The most com-
mon class in this subset is then assigned to the participant [26].

IV. DATA SET AND DATA PRE-PROCESSING

To implement the proposed algorithms, we use the publi-
cally available John Hopkins University Intuitive Surgical Inc.
Gesture and Skill Assessment Working Set (JIGSAWS) [14].
It includes video recordings and 76 kinematic signals from 8
surgeons performing suturing, needle passing, and knot tying
on the daVinci Surgical System. The three defined levels of
surgical expertise are expert (an individual with over 100 hours
of experience), intermediate (between 10 to 100 hours) and
Novice (under 10 hours). Of the 8 surgeons who participated
in the study, 2 self-identified as experts, 2 self-identified as
intermediates, and 4 self-identified as novices.

The database is composed of 3 surgical tasks, namely
suturing, knot tying, and needle passing. Each of these surgical
tasks is broken down into a sequential combination of 15
possible annotated surgical gestures, as listed in Table III. In
knot tying the surgeon picks up one end of a suture, while the
other end is tied to a flexible tube. The surgeon ties a single
loop knot. During suturing, the surgeon picks up a needle
and passes it through the tissue three times. Finally, during
needle passing the surgeon picks up a needle and passes it
through small metal hoops from right to left[14]. Each surgeon
performed each of these three tasks 5 times.

There is a total of 1703 gesture samples in the database and
between 38 to 40 total samples of each surgical task, which
resulted in a total of 118 total task samples (see Table III).
The data was zero padded to ensure all samples used in the
CNN have the same temporal length. The first derivative of
each of the input dimensions was also taken and added to
the sample. The gesture and task recognition CNN models
were respectively given labeled samples from the gesture and
task database in the form of wX and wY , which were then
individually classified into 1 of 15 possible gestures or into 1
of 3 possible tasks. For gesture recognition, the gestures were
divided into three subsets, each corresponding to a task, as
seen in Table III. Then the CNN was trained and evaluated
individually on each of these sets. This helps eliminate any
kinematic differences caused by the task being performed,
rather than by the gesture itself. For task recognition, all data
is combined and used for training and validation.

To validate the CNN models, ”Leave One User Out” cross
validation was used and the average accuracy across the 8
trials (one for each user or surgeon) is reported. This helps
ensure the models do not overfit and have not seen trials from
the same surgeon in both training and testing. For expertise
recognition, three data structures were created, one for each
surgical task. The DTW-kNN algorithm was used to predict
what level the surgeon was performing each task. This model
was validated using a 80-20 train/test split. The needle passing
and suturing data sets each contained 40 total samples. Due
to two files either being empty or corrupted, the total number

TABLE III: List of gestures and tasks used in the evaluation,
including what gestures compose a task, and the number of
samples for each in the database [14].

Gesture Description Samples

G1 Reaching for needle with right hand 78
G2 Positioning needle 283
G3 Pushing needle through tissue 275
G4 Transferring needle from left to right 202
G5 Moving to centre with needle in grip 68
G6 Pulling suture with left hand 275
G7 Pulling suture with right hand 0
G8 Orienting needle 76
G9 Using right hand to help tighten suture 25
G10 Loosening more suture 5
G11 Dropping suture and moving to end point 100
G12 Reaching for needle with left hand 70
G13 Making C loop around right hand 75
G14 Reaching for suture with right hand 98
G15 Pulling suture with both hands 73

Task Gestures in Task

Suturing G1-6, G8-11 40
Knot tying G1, G11-15 38

Needle passing G1-6, G8, G11 40

of samples for the knot tying task was 38. The number of
neighbours in the k-NN classifier was set to k = 3.

Since this paper aims to determine the importance of each
sensing modality, each trial a specific subset of sensors was
selected and thus only a subset of c dimensions of the input
data was used to train and test the model. This resulted in 64
individual, identical models being trained and tested, for both
surgical gesture recognition and surgical task recognition.

V. RESULTS

Figure 2 shows the normalized cumulative accuracy of
gesture recognition (left). All 15 gestures are classified using
all 64 possible sensor combinations. The sensor combination is
indicated by the 6 columns on the left: A shaded back square in
a row indicates that the sensor was used, and unshared squares
indicate the sensor was not used. The gesture classification
results are separated per task, since each CNN was trained
with gestures from the same task, (see Table III). The figure
adds up the average classification accuracy of all gestures in
a task, then normalizes the results to the highest classification
accuracy. The right side of Figure 2 shows the cumulative
accuracy of task recognition, also normalized to the highest
classification accuracy. As can be seen, gripper angle and
velocity are important sensing modalities in both surgical
gesture and surgical task recognition. Interestingly, when all
sensing modalities were included in the tested models, the
performance was never the top ranked in terms of accuracy.

Table IV summarizes the best performing sensor combina-
tions in order of accuracy, across each of the three classifica-
tion exercises. The combination of velocity and gripper angle
alone (sensor Group 2 and 6), are in the top accuracies, with
each of these modalities being in every other top performing
combination. Thus, by only measuring linear tool velocity and
the tool gripper opening angle, a very good estimation of
the surgeon’s intention can be made. Table V compares the
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Fig. 2: Cumulative classification accuracy for gesture (left) and task recognition (right). On the left, each category corresponds
the average classification accuracy of all gestures in a task (see Table III). The accuracy across all three classes ads up to
300% but is normalized to 1. A shaded black symbol indicates which sensing modality was used.

accuracy of the proposed methods with reduced dimensions
against other gesture classification methods that used the same
dataset. The proposed method outperforms these algorithms,
reinforcing the notion that sensor selection plays a crucial
when performing surgical gesture recognition and assessment.

Figure 3 shows the normalized cumulative accuracy of
expertise level recognition. We see that the sensor combination
of gripper angle, velocity and acceleration, is also the best per-
forming, similar to gesture recognition, reaching an accuracy
of 86%. Table IV further summarizes the sensor combinations
that led to the most accurate expertise level recognition.

VI. RECOMMENDATIONS AND CONCLUSION

Performing motion and surgical skill analysis within tradi-
tional laparoscopic box trainers involves selecting an appro-
priate sensing modalities to allow for accurate estimation of
the trainee’s intention. Deciding the suite of sensing modalities
involves several considerations including resource cost, both
monetary and computing, classification accuracy, and what
actionable feedback they offer to the trainee.

As the results of gesture, task, and expertise recognition
show, linear velocity and gripper angle are important pa-
rameters to be measured to provide accurate classification.
These findings remained consistent across multiple configu-
rations/model architectures tested; however, only the model
described in Fig. 1 was included in the interest of space.
These two sensing modalities appear in the top sensor array
combination for all three classification exercises. Also, the
top-performing combinations also include linear acceleration,
which could be easily measured using an IMU. For gesture
recognition, 8 of the top 9 performing combinations used
velocity and gripper angle to classify the current gesture.
Including linear position provided no gain in performance, as
can be seen in Table IV. This leads to the recommendation
that linear position could be determined from an alternative
sensor than a kinematic position sensor, such as a camera.

Fig. 3: Normalized expertise level classification accuracy.
The 6 columns on the left indicate the sensors used in the
classification algorithm.

This reduces the required hardware, as a camera is already
available in most laparoscopic trainers.

The results from this paper suggest that when selecting sen-
sors to equip a laparoscopic surgical training device, it is im-
portant to measure the gripper angle, velocity and acceleration
of the tool tip. With only these three sensing modalities, our
classification algorithm achieved the same or better accuracy
than other algorithms that used the same data set [16], but
with fewer data dimensions: The original dataset contained 76
dimensions of available data, yet our algorithm only requires
four for a similar outcome. The achieved accuracy is within
the is within the upper limit of range of human labeling
performance of the JIGSAWS dataset [16].

The goal of this study is to inform the design of laparoscopic
surgery simulators, in terms of which sensor modalities are



TABLE IV: Best average gesture, task, and expertise classifi-
cation accuracy for different sensor combinations

Sensors Knot Tying Suturing Needle Passing

G
es

tu
re

s

Group 1, 2, 4, 5, 6 85% 85% 77%
Group 2, 5, 6 83% 84% 80%
Group 2, 3, 5, 6 86% 83% 77%
Group 2-6 83% 86% 75%
Group 2,6 86% 83% 75%
All sensors 82% 82% 73%

Task Expertise

Sensors Accuracy Sensors Accuracy

Group 1, 5, 6 87% Group 1, 2, 4, 6 80%
Group 1, 4, 5, 6 86% Group 1, 2, 6 78%
Group 1, 2, 6 82% Group 1, 2, 5 77%
Group 1, 2, 4, 5 82% Group 1-4 72%
Group 1, 3-5 81% Group 1, 2, 5, 6 71%
All sensors 68% All sensors 72%

TABLE V: Comparison of gesture recognition accuracy using
a reduced dataset vs slave side data set using Gaussian Mixture
Model - Hidden Markov Model classifier from [16].

Author Method Knot Tying Suturing Needle Pass.

Ahmidi et al. [16] GMM-HMM 78.44% 80.83% 66.22%
This paper CNN 86.00% 86.00% 80.00%

most informative when providing feedback to trainees. How-
ever, the data was obtained from the DaVinci robotic surgery
system, where all movements are characterized by a full suite
of sensor modalities, permitting the objective comparison of
different sensors. One limitation of such an approach is that
robotic surgery differs from traditional laparoscopy in terms of
how the instruments are controlled, how the actions are imple-
mented (e.g., some smoothing may be applied by the robotic
control systems), and the constraints on which movements can
be executed. While both types of surgery use a laparoscopy
approach, these differences may limit our ability to generalize
results from the current analysis to the design of traditional
laparoscopy simulators. This study found gripper angle, tooltip
linear velocity, and linear acceleration to be key sensing
modalities in robotic surgery, aligning with previous studies
on traditional laparoscopy research and revealing common
kinematic trends in both approaches [27]. Future research will
seek to confirm and validate these findings on data collected
during traditional laparoscopic training exercises.

Analysis of surgical training data is a crucial step to give
a training surgeon an interpretable performance metric, and
actionable feedback when training. The results from this
paper can guide the development of low cost laparoscopic
training devices and algorithms that provide clear, concise,
and actionable performance feedback.
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